STEREOSPECIFIC SYNTHESIS OF (*b*)-ALKENYLPYRIDINES *VIA* α-SILYL CARBANION¹

Takeo Konakahara* and Yukio Takagi Department of Applied Chemistry, Science University of Tokyo Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

Summary: (E)-2-Alkenylpyridines were stereospecifically prepared from 2-(trimethylsilylmethyl)pyridine and the corresponding (E)-aldimines of anilines by an analogous reaction to the Peterson reaction.

In the previous paper, we prepared 2-alkenylpyridines from 2-(trimethylsilylmethyl)pyridine and carbonyl compounds.² By the method, a mixture of (E)and (Z)-isomers was obtained, and similar observations have been reported by many workers.³ Generally, there is no stereoselectivity in the direct Peterson reaction, $^{4\nu_6}$ because of the formation of mixed diastereomers, and it has not been controlled so effectively as the Wittig reaction.^{5a} Aldimine reacts with alkyl α -haloacetates in the presence of zinc to form amines and/or β -lactams, 5b,7 and with 2-lithiomethylpyridine to give the corresponding 2-(2-pyridyl)ethylamine derivatives.⁸ In the presence of potassium t-butoxide, 2-picoline and N-(2pyridylmethylene)aniline gave (E)-bis(2-pyridyl)ethene in low yield (20 \sim 30%).⁹

We now wish to report a stereospecific synthesis of (E)-alkenylpyridines $(\underline{3})$ \sim (<u>6</u>) from 2-(trimethylsilylmethyl)pyridine (<u>1</u>) and (E)-imines (<u>2</u>) in good yields (Eq. 1). In a typical run, twenty mmol of (<u>1</u>) was lithiated with LDA in THF at -75 °C, and the resultant solution was treated with a THF solution of imines (<u>2a</u>)

 \sim 2g) at -75 °C to afford (E)-2-alkenylpyridines (3) \sim (6). The result obtained is shown in Table. N-Benzylideneaniline (2a) gave (E)-2-styrylpyridine (3) in high yield (84% isolated), and the (z)-isomer was not found. The product (3) was also obtained in high yield (84% HLC) in the reaction with N-benzylidene-pchloroaniline (2b), but (3) was difficult to be isolated from the liberated pchloroaniline by a recrystallization from ethanol. N-(2-Pyridylmethylene)aniline (2c) and N-cinnamylideneaniline (2d) gave (E)-bis(2-pyridyl)ethene (4) and 1phenyl-4-(2-pyridyl)-1,3-butadiene (5) in moderate yields (54, 68% isolated), respectively. On the other hand, a ketimine (2e) was not so reactive as the aldimines. When (1) was treated with (2e) under the same condition, (E)-2phenyl-1-(2-pyridyl)propene (6) was obtained in low yield (10.5% GC) together with the (2)-isomer (1.5% GC yield), and the unreacted starting materials were recovered. This lower reactivity of (2e) may be due to a steric hindrance. The reaction with N-benzylidenealkylamines (2f,g) also gave unsatisfactory results (see Table).¹⁰ This shows that the aldimines of anilines are more suitable for

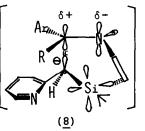
							—
<u>2</u> Ar	R			$(-(E)-isomer^{a} -) ($		itio	
						This work (by GC)	
<u>a</u> C ₆ H ₅	H	с ₆ н ₅	3	84 (86)	87 ∿ 89 ^C	100 : 0	25 : 75
^b ^C 6 ^H 5	H	p-CIC6H4	<u>3</u>	32 (84) ^đ	88.3 ^c	100 : 0	25 : 75
<u>c</u> 2-Py ^e	H	с ₆ н ₅	<u>4</u>	54 (67)	$118 \sim 120^{f}$	100 : 0	
₫ с ₆ н ₅ сн=сн	H	с ₆ н ₅	<u>5</u>	68	120.7 ∿ 12	1 ^g	
<u>e</u> c ₆ ^H 5	CH	3 ^C 6 ^H 5	<u>6</u>	(10.5) ^h	•	87.5 : 12.5	40 : 60
<u>f</u> C ₆ H ₅	H	снз	<u>3</u>	(10.2) ⁱ		99.6 : 0.4	25 : 75
g C ₆ H ₅	H	t-C4 ^H 9	<u>3</u>	(0.5)			

Table Yields and Physical Properties of the Products (3) \sim (6)

a) Only the (E)-isomer was obtained in all cases examined except for $(\underline{2e}, \underline{f})$, and recrystallized from an indicated solvent and identified by a comparison of the spectral data or R_t value of GC with those of an authentic sample;² GC yield in parenthesis. b) Prepared from the corresponding carbonyl compound and determined by NMR.² c) From ether or ethanol (lit.² 88.5 \sim 89.0 °C). d) HLC yield in parenthesis. e) 2-Py: 2-pyridyl. f) From ether (lit. 118 °C, E. Bayer and E. -G. Witte, J. coord. Chem., 7, 13(1977)). g) From petroleum ether (lit.² 120 \sim 121.5 °C). h) 1.5% of the (z)-isomer was found. i) A trace of the (z)-isomer was found. the preparation of 2-alkenylpyridines than those of aliphatic amines.

Of particular utility is the result that this reaction is highly stereospecific. In all cases of aldimines of anilines examined, more than 99.5% of the product was found to be the (E)-isomer by means of GC analysis.¹¹ The reaction is expected to proceed by a step-wise process like the Peterson reaction. That is, the first step is the formation of an intermediate β -silylamine (7) and the second step is the elimination of N-trimethylsilylanilide from (7). In the Table the ratio of the isomers (E)/(Z) obtained in this work was compared with the values obtained in the previous work,² in which the corresponding carbonyl compounds were employed as electrophiles. The high stereospecificity in this work may be caused by the facts that the configuration of the imine (2) is (E)-form and that the plane of the N-phenyl group is perpendicular to the plane of the carbon-nitrogen double bond. This geometrical structure of (2) makes the occupied p-orbitals of the N-phenyl group interact with the vacant d-orbital of silicon atom in the transition state of the first-step reaction, 1^{12} and the three- β silylamine may exclusively be formed. This speculation is confirmed by the following facts; (a) an unsatisfactry result was obtained in the reaction with (2f) and (2g), (b) the reaction with (2a) gives exclusively (3) as a product together with the unreacted starting materials and the liberated aniline in the quenching experiment with water at -75 °C after 5 or 60 min reaction period, 11 that is, the intermediate (7) and 2-picoline formed by a destruction of (1) could not be observed, (c)anilines were quantitatively recovered in all cases examined, ¹³ (d) a reaction of 2-lithiomethylpyridine with (2a) did not give (3),⁸ and (e) the trimethylsilyl group is easily transferred from carbon atom to nitrogen atom.¹⁴ The fact (a) suggests the importance of the orbital interaction and the fact (b) suggests that the first-step reaction is slow and the second step is very fast. The second-step reaction may be a syn-elimination. If it proceeds by a mechanism analogous to E2, it will never give only the (E)-isomer.¹⁵

In a comparison with the Peterson reaction employing a carbonyl compound,^{2,3} the present method has advantages of a higher stereospecificity and a higher yield, while it has regrettably a disadvantage of a lower conversion in the case of ketimines. Further investigation is now in progress.


2075

Experimental procedure has been reported previously.² To the reaction mixture was added aq. saturated ammonium chloride instead of water at 0 °C after

stirring for l h at -75 °C and then for 2 h at room temperature. The result obtained is shown in Table.

References and notes

- A preliminary report of this work was partially presented at the 40th National Meeting of the Chemical Society of Japan, Fukuoka, Japan, October 1979.
- 2. T. Konakahara and Y. Takagi, Synthesis, 1979, 192.
- 3. a)K. Shimoji, H. Taguchi, K. Oshima, H. Yamamoto and H. Nozaki, J. Am. Chem. soc., <u>96</u>, 1620(1974); b)T. H. Chan and M. Moleland, Tetrahedron Lett., <u>1978</u>, 515; and references cited therein.
- 4. Silanol elimination from an intermediate β -hydroxysilane is stereospecifically controlled (P. F. Hudrlik, D. Peterson and R. J. Rona, J. Org. Chem., <u>40</u>, 2263(1975).
- 5. a)J. Reucroft and P. G. Sammes, Q. Rev. Chem. Soc., <u>25</u>, 135(1971); b)A. F. Cockerill and R. G. Harrison, "Suppliment A, the Chemistry of Double-bonded Functional Group," part 1, Ed. S. Patai, John Wiley & Sons, New York(1977), pp. 149.
- 6. Lucast and Wemple have reported a highly stereoselective alkene synthesis from α -trimethylsilylacetic thiol ester and carbonyl compounds (D. H. Lucast and J. Wemple, Tetrahedron Lett., <u>1977</u>, 1103).
- 7. J. L. Luche and H. B. Kagan, Bull. Soc. Chim. France, 1971, 2260.
- 8. R. F. Shuman and E. D. Amstutz, Rec. Trav. Chim., 84, 441(1965).
- 9. G. R. Newkome and J. M. Robinson, Tetrahedron Lett., 1974, 691.
- Most of the unreacted (2g) was recovered from the reaction mixture, while (2f) was completely destructed to produce a by-product. The structure was not identified.
- 11. The reaction mixture quenched with water after 5 (or 60) min reaction period gave 43% (or 50%) of (3), 0.2% of the (z)-isomer, 26% (or 17%) of the unreacted (<u>2a</u>), the unreacted (<u>1</u>) and the liberated aniline.

- 12. For example, the following formula $(\underline{8})$.
- 13. In the reaction with (2b), 84% (by HLC) of p-chloroaniline was formed.
- 14. K. Itoh, H. Hayashi, M. Fukui and Y. Ishii, J. Organometal. Chem., <u>78</u>, 339 (1974).
- 15. a)A. W. P. Javie, A. Holt and J. Thompson, J. Chem. Soc. (B), <u>1969</u>, 852; b) A detrimethylsilylation from (<u>1</u>) or its derivatives is strongly affected by the α -substituents of the trimethylsilyl group.²